

Ganzheitliche Systemlösungen zur Bewältigung energiepolitischer Herausforderungen

Holistic system solutions to meet energy policy challenges

VGB-Conference / Essen / 23.09-2021 / Dr. H.-U. Thierbach / L. Brandau / A. Haite

Rely on good experience with

The Engineers Company

Content

- I. Introduction Revolutions in Energy Providing Industry
- II. Steinmüller Engineering Business Areas in the recent past
- III. Current & Future portfolio for new Energy Infrastructure
- IV. Summary

Introduction – Revolutions in Energy Providing Industry First Revolution in Energy supply beginning 20th century

Until 20th Century

Power from Muscular Strength

Carl Baum (1941)

Ilya Jefimowitsch Repin (1872/73)

Sun Based Energy

Preußen (1902)-Wikipedia

20th Century – Fossil Fuel Based Power Power Station Reisholz

19083 x 5 MWel turbines191875 MWel largest power
station in the world1920Explosion of coal fired
steam GeneratorFoundation of VGB in Leuna

Power Station Boxberg unit Q 2000 1x 900 MWel Hight Boiler Haus 160 m Hight Cooling Tower 176 m

Sun Based Energy

Aggertalsperre (1929) 2,5 GWh /a (2,25 MWel)

KW Reisholz 1930 - Wikipedia

IHI GROUP

engineering

Introduction – Revolutions in Energy Providing Industry First Revolution in Energy supply beginning 20th century

Example for illustration : 24 000 MWh = 24h operation of 1.000 MWel Power Station

Virtual Horse Power Station 1000 MW mech		Hard Coal Power Station 1000 MW el ~ mech	
Power : 1.000 MW mech → 1,360 Mio Horses		Power : 1.000 MW el \rightarrow 2.220 MW th (eff. 459	
24 hours operation 4 horses/d to cover 24 hours(h) → Total # horses : 5,44 Mio		24 hours operation Lower heating value 25 MJ/kg	
Fuel : 10 kg hay/d per horse \rightarrow 54.400 t hay/d Volume flow : 90.700 m ³ /d \rightarrow 1.200 Wagon/d (75 m ³ / Wag) Hay Consumption : 54.400 t/d \rightarrow 20 Mio t/a Necessary farmland* : 2 Mio hectare (12% of total farmland)		Fuel : 89 kg/s coal \rightarrow 320 t/h \rightarrow 7.672 t/d Volume : 9.025 m ³ /d \rightarrow 120 Wagon/d (75 m ³ / Coal Consumption : 2,762 Mio t/a (2.4% of annual exploitation 1970)	
*Harvest : 10 t hay per hectare per year			
steinmüller			

N el \rightarrow 2.220 MW th (eff. 45%)

al \rightarrow 320 t/h \rightarrow 7.672 t/d $n^{3}/d \rightarrow 120$ Wagon/d (75 m³/Wag)

n in Germany 1970 \rightarrow **111 Mio t/a**

Introduction – Revolutions in Energy Providing Industry Second Revolution in Energy supply beginning 21st century

20th Century – Fossil Fuel Based Power

21st Century From fossil to **100% Sun Based Energy supply**

IHI GROUP

Hamburg Green Hydrogen Hub 2038 2015 🗕 **2050** Paris Klimaschutzvertrag ská republika 11.March 2011 Fukushima Wärme Hamburg (2021) KW Lünen / 12/2013 / 1 x 750 MWel Commerzbank-Studie (2020): Windkraft auf Expansionskurs Solana CSP plant (US) Sun Based Energy 2010 Oil Crises 1973 1980 Sonntagsfahrverbot Wallenius Marine Solar PS10 Sevilla - Wikipedia Kange Studio - stock.adobe.com Umweltbundesamt steinmüller Wikipedia

engineering

Introduction – Revolutions in Energy Providing Industry

Second Revolution in Energy supply beginning 21st century

Example for illustration : 8 TWhel = 8000h operation of 1000 MWel Power Station (one year)

20th Century – 100% Hard Coal Based Power

Efficiency 46% (modern plant) CO2-Emissions: 850 g CO2/kWhel Source UBA 2017UBA 2017 - Daten und Fakten zu Braun- und Steinkohlen / https://www.volker-quaschning.de/datserv/CO2spez/index.php

8 TWhel -> 6,9 Mill t CO2 per year

100% German Power 2020 from Hard coal → 469 Mill t CO2 per Year (545 TWhel/a)

Carbon footprint / Year (per person for living, food, heating, power, mobility) 2019/Germany 7,9 t CO2 per head 2018/China 6,8 t CO2 per head

21 st Century	- virtual 100% Onsh	ore Wind Power	
Utilisation	Efficiency	# 5MW Units*	
50 % Direct consum	ption 100 %	400	
20 % Battery	85 %	189	
I 15 % HTS-Storage	45 %	267	
15 % H2 Storage	25 %	480	
Total Capacity		1.336 -> 6.680 MW	
*2.000 full load h/a / 29.715	5 Installed Onshore Wind Mills in (Germany June 2021 with 55.772 MWel	
 Specific space cons Source: Rotorblattspitze innerhalb oder Bernd Neddermann; DEWI – UL Interna Required area: ~ 20 	umption: ~30 m ² /kW (wind außerhalb der Konzentrationszone: Welchen Einfl tional GmbH, Wilhelmshaven, Eike Müller; Klimase 00 km ² ~ 28.000 soccer fie	d park, 5MW mills, min. mill distance uss hat dies auf den Flächenbedarf einer Windenergieanlage? chutzagentur Region Hannover GmbH, Hannover', Juni 2015 Ids (Bundesland Bremen 419,4 km ²)	;) }
Solar PV - Require Required PV capacity: 13.360 MW (Full	d space: ~200 km ² (=20 load hours/year: 1.000) // Specific space consump	000 hectare) otion: ~15 m²/kWpeak, ground-mounted PV	
Germany 2020 :	Power consumption = 54	5 TWhel (app. 23 %-total)	
68 times 8 TWhel	\rightarrow 90848 windmills with	total capacity 454 240 MWel	
I	→ required area 1,36 M	io hectare (8,2 % of German farmland	d)
Germany 2020	-		

steinmüller

Final Energy = 2360 TWh / share of sun based 455TWh 19,3% https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen#uberblick

H GROUP

engineering

Content

- I. Introduction Revolutions in Energy Providing Industry
- II. Steinmüller Engineering Business Areas in the recent past
- III. Current & Future portfolio for new Energy Infrastructure
- IV. Summary

Engineering & Supply for conventional fuels power stations

 \geq

Dual-Fuel

RSM

 $\mathsf{SM} \mathsf{V}$

steinmüller

engineering

Combustion Systems

- CFD calculation
- Basic & Detail
- Manufacturing
- QA/QC
- Erection advisory
- Commissioning

- Revamp
- Upgrade
- Modernization
- Rehabilitation
- Co-firing
- Fuel conversion

Substitute Fuels

Engineering & Supply for power stations and utility boiler

Flue Gas Cleaning

- Selective Catalytic Reduction
- Selective Non Catalytic Reduction
- Fabric Filters
- Electrostatic Precipitators
- Wet FGD
- Semi Dry FGD
- Dry FGD

Engineering Services and Supplies

- Concept Engineering
- Engineering & Supplies
- Process Design
- Mechanical Design
- CFD Simulation

Steam Generation

- All fuels
 - o PF fired
 - o CFB
 - o Grate firing
- All boiler types
 - o Tower-type
 - o 2-pass
 - o Multi-pass
- All parameters
 - o Sub-critical
 - o Super-critical
 - o Ultrasuper-critical
- Chemical plant components
 - Process gas cooler
 - o Ammonia
 - o Waste heat boiler
 - Nitric acid
 - o Caprolactam
 - o HCN
 - Syngas cooler

IHI GROUP

Engineering projects for power stations

Site:	PS Duvha Unit 3 (600 MW)	<u>Site:</u>	TPP Stanari BiH (300 MW)	
Client:	Eskom (RSA)	Client:	EFT (Denmark/Serbia)	
	Bit. coal, designed in 1970s		Lignite, new-build	
Task:	Total re-engineering of the boiler (like-for-like)	Task:	Owner's Engineer	
	Reduction of NOx emissions	Constant	for a 300 MW CFB boller	
Scope:	Basic & Detail Engineering for:	Scope:	- Design Review	
	- Demolition concept		 Review of all technical documents of the EPC-contractor Specification of quality assurance company Review of quality manufacturing book Workshop inspections Witness of factory acceptance tests Supervision of quality assurance on-site Supervision during erection phase 	
	- Pressure parts with modifications			
	- Ducting			
	- Firing system with new low NOx hurners			
	- Thing system with new low NOX burners			
	- PF piping			
	 Main, primary & secondary steel structure 			
	 Steam piping & low pressure service 		- Supervision during commissioning phase	
	Technical guarantees for NOx/CO emissions		- Supervision during acceptance test	
Share:	Engineering Service 100%	Share:	Engineering & Consulting Service 100%	
Finalized:	12/2019	Finalized:	09/2016 (COD 2 month ahead schedule)	

steinmüller engineering

IHI GROUP

EP & EPC projects to meet emission levels

+31m	<u>Site:</u> Client:	PS Weisweiler unit G (600 MW) RWE Power AG Lignite, operated since: 1974	<u>Site:</u> Client:	PS Lippendorf unit R (933 MW) LEAG Lausitz Energie Kraftwerke AG Lignite
	Task:	Implementation of BAT (EU-BREF), Reduction of NOx emissions	Task:	Implementation of BREF for SOx Conversion of the sump to agitator gassing
	Scope:	Concept study, Basic and detail engineering, supply: - Low NOx Burner - Secondary air ducts - PE ducts	Scope:	Installation of additional tray level Approval engineering support Basic and Detail engineering FGC and auxiliaries Manufacturing and supply Erection and commissioning
	Share: Finalized:	erection & commissioning advisor Technical guarantees for NOx/CO emissions Engineering 17%/ Supply 83% 12/2020	Share: Finalized: Site:	Echnical guarantees for SOX emissions Engineering 11%/ Supply 89% Block R Juli 2020 PS Lippendorf unit S (933 MW)
~	<u>Site:</u>	PS Weisweiler unit H (600 MW)	Scope:	see unit R
+4m	Scope:	see unit G	Status:	delivered, trial operation 09/2021
	Status:	delivered, erection starts 10/2021		

steinmüller

engineering

IHI GROUP

Content

- I. Introduction Revolutions in Energy Providing Industry
- II. Steinmüller Engineering Business Areas in the recent past
- III. Current & Future portfolio for new Energy Infrastructure
- IV. Summary

steinmüller

engineering

EPC or EP execution & Consulting solutions

Combustion & Incineration

- Biomass, residues, coal-2-gas, co-combustion
- Sewage sludge, waste
- Air Pollution Control
 - Industrial and Waste incineration
 - Dry and wet systems
- Heat Exchanger
 - Industrial application for waste heat recovery
- High Temperature Energy Storage
 - Molten salt, fixed bed (solids)
- Consulting

steinmüller

engineering

• New system solution & Digital services

EP & EPC projects to serve future market demand

Coal-to Gas Conversion (Order status)

<u>Site:</u>	<u>Herne 4 (510 MWel)</u>
Client:	STEAG Energy
Task: Scope:	Conversion from coal to gas firing Basic and Detail engineering Conversion firing system to natural gas Conversion W/S-circuit to pure district heating operation, Adaption of DCS system Erection and commissioning

Sewage Sludge Incineration (Offer status)

Site: Germany (4,5 t/h DS)

Task:EPC sewage sludge incineration plantScope:Sludge reception, -storage, -transport, -drying
incinerator, steam generator, BoP, Steam turbine,
Air pollution control, Auxiliaries, El., I&C, DCS
incl. control room, Boiler house steelwork
Technical building equipment
Erection and commissioning

IHI GROUP

steinmüller engineering

EP & EPC execution to serve future market demand

APC-wet behind industrial furnace process (Order status)

Site:	Benelux	<u>Si</u>
Task:	EPC flue gas cleaning lot	Та
Scope:	Basic and detail engineering Supply of spray cooler, activated carbon system, bag filter, 2-stage SO ₂ scrubber, wet ESP, Gypsum production, Electrical and instrumentation Erection and commissioning	So

steinmüller

engineering

APC-double dry with SCR-DeNOx behind combined waste and sewage sludge incineration (Offer status)

<u>Site:</u>	Germany 40 t/h waste + 1.84 t/h DS		
Task: Scope:	EPC flue gas cleaning Basis and Detail engineering 1st stage streaming reactor, fabric filter, recirculation 2nd stage CFB reactor, fabric filter, recirculation CFB dry lime slaking installation, Tail end SCR DeNOx heat extraction, erection and commissioning		

Engineering & Consulting to provide new system solutions

- Engineering & Consulting
 - Owners engineer
 - Engineering service
 - Plant flexibility
 - Feasibility studies
 - Life-time extension
 - Root cause analysis
 - Cost optimization
 - Relocation
 - Heat recovery
 - Power & Heat storage

Services

- Mercury Monitoring
- 3-D-Scan
- Digital Twin
- Wireless Data Collection

- Example: Replacement systems für CHP plants
 - Technical consideration of CHP coal replacement options by gas turbine
 - Modeling of the CHP coal replacement plant
 - Modeling of heat load profile / annual cycle calculation
 - Cost analysis based on annual cycle calculation
 - Integration of waste heat/ thermal heat storage in CHP plants
 - Integration of high temperature storage

IHI GROUP

1000 MWel for 6 hours -> Storage 13 GWh_{th} -> 220.000 t Checker Brigs

steinmüller

engineering

Overall huge potential in Europe for energy storage in the upcoming years

Molten Salt Storage Plant

IHI GROUP

Molten Salt HSP Study

- Surplus RE power stored as heat
- Discharge: Power generation, process and district heat
- Steam parameters: 525°C/170 bar; 210°C/16bar; 120°C/10 bar
- Capacity 500 MWh
- Storage Medium: Molten Salt

Source: Solana CSP plant (US), Caldwell Tanks

Storage Systems Comparison

		Battery	Hydrogen + HtP	Carnot Battery
General	Ressources		-	++
	Lifetime	Ο	+	+ +
	Development Level	+	0	+ +
	Pick Load	0	-	+
Power <u>to Power</u>	Efficiency	++		0
	Economics	+	-	+
	Storage Duration	Shortterm (2-4h)	Longterm	Midterm (6-36h)
Power <u>to Heat</u>	Efficiency	0	-	+ +
	Economics	-	-	+ +
	Storage Duration	Shortterm (2-4h)	Longterm	Midterm (6-36h)

engineering

Summary

- > Extensive restructuring of Energy Infrastructure is required
- > Political decisions are crucial for development of new Energy Infrastructure
- > Large challenge for transformation of operating and supply companies
- > Development of complex new concepts for specific situations
- Storage solutions and their further development are essential for the successful transformation of the Energy Sector

engineerina

